

From service to value for-money

- Hadron-therapy (proton and ions)
 - nas intrinsic physical properties to precisely target the tumors, reducing side effects
 - nas remarkable biological effects on tumor cells
 - is relatively expensive
- Continuously growing
 - technologies development
 - improved physics and biological knowledge
 - extended cost/benefit and clinical outcomes analyses

Physics-Biology-Clinics Interplay

Clinical outcomes depend on how well we **know** and **control** the physics and the biological processes involved in the hadron therapy and how we **make them happen**

Machine

- Design and construction
- Daily quality checks

Patient Preparation

- CT (PET) imaging
- Positioning/Alignment
- Immobilization
- Treatment Planning

Treatment

- Continuous monitoring
- Stop at prescribed dose

Assessment

On-line / Offline imaging

E. Cisbani

Hadron-therapy facility

Control System

Quality Assessment

VIC - 20/Sep/201

Treatment planning

Patient Data Management

•••

Costs analysis from A. Peeters et al., Rad. & Onc.

95 (2010) **45-53**

Costs (keuro)	Capital	Oper./year	Fraction	Treatment
Carbon+Proton	140000	37000	1.1	10-30
Proton	95000	25000	0.7	12-39
Photon	23000	10000	0.2	4-18

Surgery: 14-57 kUSD

Pharmacologic: 1-120 kUSD

Note: cost/treatment

strongly depends on tumor

and modality

New acceleration technologies: **Linear Accelerator**, Superconducting, FFAG, Laser Acceleration, Dielectric Wall Accelerator

Dielectric Wall Accelerator Caporaso et al. (2009) Artistic view

VIC - 20/Sep/2017

costs: 40-70 MEuro

TOP—IMPLART project

Linear Accelerator for Proton Therapy

LINEAR ACCELERATOR

- Compact and lightweight
- Radiation clean, reduced shielding
- Power efficient
- Very Modular: customizable

 according to needs; can be in operation during its construction
- Performances: all physics properties (energy, intensity, direction, ...) of the particle beam can be varied quickly and actively offering improved precision and larger flexibility on dose delivery to the patient (e.g. optimal intrafraction motion control)
- Only single ion type can be accelerated
- Never used before for therapy (but physical modality similar to photon therapy)

F. Cisbani

VIC - 20/Sep/2017

Projects on

LinAc for PT:

LIGHT, Erha,

TOP-IMPLART

LinAc for Proton Therapy becoming real

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Status:

Energy: 35 MeV

(150 MeV in 3 years) Current/Pulse: 30 uA

Current development total costs: ~6 Meuro

Already in operation for:

- Beam and diagnostics characterization
- Radiobiology studies
- Cultural heritage analyses
- New development (e.g LiF dosimetry)
- Radioprotection optimization studies

Robust Treatment Planning

The optimal exploitation of a very accurate equipment needs to tackle all details of the involved processes and a carefull plan

Accurate (few %) and extended low energy nuclear physics data

Radiobiology data

Anatomic and Functional

Imaging of the patient

Detailed and validated accelerator description

Physics Processes

 Tracking particles in heterogeneous matter

Biological Effects

 Tumor and Normal Tissue Biological / Personalized Response

Planning System

- Decision support (AI)
- MonteCarlo methods
- Computing Power

Nuclear Science and Technologies

play a major role in many key aspects of hadron radiation therapies and their improvements are substantial for the ultimate benefit of the patients

Accelerator

Diagnostic Devices

Redundancy and Safety

Planning

Quality Control

Imaging

Modeling

MonteCarlo (computing)

Treatment

Delivery modality

Delivery control

Intra-fractional Motion control

Assessment

Online Dose Delivered Verification

Montecarlo validation

Thank You