

Nuclear Techniques

in Human Health

Prevention, Diagnosis, Treatment

University of California San Francisco, CA USA

Why is measuring body composition important?

- Dramatic lifestyle changes have altered eating habits and activity levels worldwide, driving an increase in obesity for many low- or middleincome countries (LMIC).
- Protein-calorie malnutrition is still prevalent in some LMICs and can occur in combination with excess adiposity
- There is a critical need for accurate quantitative markers of nutritional status appropriate for lowresource settings for both public health research and diagnostic and monitoring purposes.

Role of Body Composition Measurements in Population Studies

Outcomes in descriptive and interventional studies

- Effects of aging, disease, pregnancy, malnutrition, infection on body composition
- Effects of diet eversies other lifestyle changes

Assessable technologies make these objectives possible on LMIC environments!

- Changes in fat or muscle may affect exercise capacity, insulin sensitivity, lipids
- Gender differences may be explained by differences in body composition
- Regional fat has different metabolic properties

Nuclear methods for validating accessible BC technologies

D₂O TBW
Deuterated Total Body Water

Dual-energy X-ray Absorptiometry (DXA)

Total Body Potassium

Challenges in measuring BC in low resource settings

Nuclear techniques are the most true and precise but costly

TABLE 2 Special considerations for measuring body composition with specific technologies

	DXA	BIA	Subq thick	Wt and ht indices	Anthropometry	Dilution	твк	Body density
Cost		+	++	++	±			-
Compliance	±	±	++	++	++	++	++	+
Infrastructure		++	++	++	++	1 1		-
Precision	++	++	+	++	++	++	++	++
Quality control	++	-	+	+	+	++	++	++
Training		++	-	++	++	1 1		-
Trueness	++	+	-	+	±	++	++	++
Safety	-	++	++	++	++	++	++	++

^{+,} advantagous; ++, more advantageous; -, limitations; -, more limitations than comparative technology. DXA, dual-energy X-ray absorptiometry; BIA, bioimpendance; subq, subcutaneous; wt, weight; ht, height; TBK, total body potassium.

- Bioimpedance
- Anthropometry/Volumes
- Muscle Measures
- 3D Optical Body Scans

- Bioimpedance
- Can be inexpensive but accuracy must be validated

Forms of anthropometry – tissue dimensions

Classical Skin Fold

Near-Infrared Interactance

A-mode Ultrasound

- Provide reasonable accuracy of local tissue thicknesses
- Can be validated against DXA and TBW
- Generally poor accuracy in predicting overall body composition
- Best accuracy in the young, fit, healthy!

- Deuterated Creatine Muscle mass
 - ➤ Water status can affect accuracy of muscle measures using DXA, BIA
 - Deuterated creatine measure not affected by hydration
 - >95% of creatine stored in muscle
 - ➤ Muscle mass = creatine pool size / 4.3 g/kg

- 3D Optical Body Scans
- 2D Cell Phone Apps

3D optical acquisition

Registration

Anthropometry

Predicted DXA Fat

Selfie Body Composition measures

THE THREE STAGES OF MAN

Body Shape Prediction models based on changes in fat and muscle mass

body compositions

Questions:

- Is BMI enough for monitoring health in individuals?
- How could you better identify individuals that would benefit from a dietary or lifestyle intervention?
- How could you better monitor individuals on an intervention?

The Selfie body composition demonstration app make monitoring body composition assessable!

How would you use the selfie app?

Look for the Selfie Body Composition App this Fall on Google Play!

Case Examples

Obesity - Male

Selfie Cell Phone

22 year old African-American Male Weight = 117 kg Height = 176 cm BMI = 38

Is this enough information for a targeted intervention?

Images not for diagnostic use

Lean

Fat

Do you think targeting fat and lean interventions is more useful than weight alone?

DXA Body Composition

Obesity - Male

BMI = FMI + LMI

Fat mass Index (FMI)

= 14.5 kg/m2 (Obese Class I – should reduce)

Lean Mass Index (LMI)

= 23.1 kg/m 2 (High - OK)

Recommendation:

Bone

Reduce Fat Mass Index (down to 6.0 kg/m2) Keep Lean Mass Index in healthy range (above 16 kg/m2)

BMI = 26, Weight = 80.5 kg FMI = 6.0, LMI = 20.0

3D Optical Obesity - Male

In the intervention,

He lost

37 kg weight

26.5 kg Fat

10 kg Lean

BMI was 37, and is now 26 kg/m2

Underweight/Low Lean - Female

Selfie Cell Phone

22 year old Caucasian Female Weight = 47 kg Height = 168 cm BMI = 16.5

Is this enough information for a targeted intervention?

Images not for diagnostic use

Lean

Fat

DXA Body Composition Underweight Female

Fat mass Index (FMI)

= 4.1 kg/m 2 (Low, less than 5)

Lean Mass Index (LMI)

= 12.2 kg/m2 (Low, less than 15)

Appendicular Lean Mass Index (ALMI)

= 4.6 kg/m 2 (Low, less than 5.4)

Recommendation:

Bone

Increase Fat Mass Index (up to 6.0 kg/m2)
Increase Lean Mass Index (up to 16 kg/m2)

Do you think targeting fat and lean interventions is more useful than weight alone?

BMI = 21, Weight = 60 kg FMI = 6.0, LMI=15.0

3D Optical Underweight Female

In the intervention,

She gained

16 kg weight

5 kg Fat

10 kg Lean

BMI was 16.5, and is now 21 kg/m2

Summary

Nuclear techniques can successfully be sused to calibrate assessable technologies like 3D optical for identifying who and how to intervene for improved health

THANK YOU!

