阿根廷将核技术应用于水

在阿根廷,就像世界上许多地方一样,水也面临着过度开采和污染的危险。为了保护水,科学工作者在原子能机构的支助下,正借助核技术研究水最隐蔽的一些细节。

<p>(视频:M. Klingenboeck/原子能机构)</p>

阿根廷门多萨 — 在阿根廷,就像世界上许多地方一样,水也面临着过度开采和污染的危险。为了保护水,科学工作者在原子能机构的支助下,正借助核技术研究水最隐蔽的一些细节。

犹他大学地质学和地球物理学教授道格拉斯·基普·所罗门正协助阿根廷专家在原子能机构帮助下绘制水资源地图。他说:“世界上的大部分可用淡水都存在于地下,但我们可利用的大部分淡水都是地表水。极为重要的是,我们应了解地表水与地下水的相互作用。唯如此,我们方知如何妥善管理和保护这些资源。”

科学工作者们可以借助核技术确定供水数量和质量。他们利用天然存在的同位素作为示踪剂,以探明地下水来自何处,是新是旧,是否存在补给或污染,以及流径如何。

这背后的科学就叫同位素水文学。专家所罗门认为,这一学科是“可用于彻底评估地下水的最强大、最值得信赖的工具之一。”

“我们期待查明水在含水层中的确切流动方式及其与河流相互作用的方式,以及剩余的水储量。”门多萨库尤大学同位素水文学家Sandra Ibáñez说。他正参加原子能机构在该国的技术合作项目。原子能机构就同位素水文学向世界各地的科学工作者提供支助,派遣专家到现场工作,并培训当地的水文工作者使用这些同位素技术。

自2016年初以来,阿根廷同位素水文学家在原子能机构的帮助下收集和解释了两个战略地区的数据,目的是让政策制定者利用这些信息,为这些地区设计出更加完善的水资源管理模型 — 水文学模型。

“阿根廷很幸运,居民的人均水资源数量非常充足,但是全国的水资源分布非常不均匀。”阿根廷国家原子能委员会环境主管Daniel Cicerone说,“在某些地区,探明日常用水是否存在定期补给、是否面临枯竭或存在污染危险的工作能够带来贫富之别。”

water_infographic_-01.jpg

隐蔽储备

出于不同原因选择了两个地区。第一个地区是阿根廷西部的门多萨干旱河谷。这里人们的生活全靠乌斯帕亚塔、亚瓜拉斯和其他较小范围的含水层淡水。当局迫切希望查明是否能可持续地开采这些地下水,这些含水层是否足以支持更多的用水量。

乌斯帕亚塔山山顶独木舟和漂流探险用品商店工作人员Sergio Cirauqui说:“我们无处不需要用水:清洗工具、保持清洁。水是我们的日常食物。但我们很清楚,水是一种有限的资源,我们必须用心爱护。而且对于这种有限的资源,我们差不多应该当作神圣之物来利用。”

阿根廷同位素水文学家们在门多萨的山区和平原徒步穿行了一年多,在国际专家和原子能机构专家的陪同下从水井、湖泊和河流中采集了水样。回到实验室,他们正对研究结果进行解释,以便更清楚地描绘出可用水状况。

根据含水层补给率等数据,决策者更有条件制定饮用、农业和工业用水规则。例如,了解地表水渗入地下水的情况后,就能够针对可接受的污染水平制定更严格的规定。

“一旦有了结果,我们就可以决定在门多萨开发什么样的商业活动。”门多萨灌溉事务局地下水处副处长Juan Andrés Pina说。

arg6837_1140x640.jpg

同位素水文学家从阿根廷西部门多萨采集水样。(照片来源:L. Gil/原子能机构)

正在研究的第二个地区是位于布宜诺斯艾利斯西部约700公里处的老采矿综合设施 — 科尔多瓦巨人山的河床。阿根廷当局正在这里与同位素水文学家密切合作,实施一个环境治理项目,以更好地探明地下水质量及其污染隐患。

两个铀矿关闭后,科学工作者和当局对该地区的地下水保持着警戒。现在,科学工作者们正通过原子能机构项目,监测科尔多瓦市居民用水水源 — 圣罗克湖水库的补给水是否清洁和安全。

虽然他们已查明地下水中的铀含量尚属安全,但正努力探明地下水的确切来源和运动,包括补给区、水龄、体积、行为和今后的污染隐患。

国家科学技术研究委员会的地质学家和研究员Daniel Martínez说:“这种跨学科和跨机构的研究将有助于当局改善该地区的概念模型和水文理解,并加强场址治理工作。”

原子能机构技术合作司的Raúl Ramírez García科长说,地区技术合作项目对于向国家和地方机构转让知识和技术至关重要。

Ramírez García说:“同位素技术提供的新信息将有助于监测水资源,并有助于作出能够为这些地区的人口带来社会和经济利益的决策。”

arg6772_1140x640.jpg

农业在全世界的淡水用量最大。照片中的农民正在门多萨的葡萄园里整地。(照片来源:L. Gil/原子能机构)

科学

水分子由氢原子和氧原子组成,但所有的原子并不完全相同:有的原子轻些,有的重些。

“所有天然水都由不同的氢和氧同位素组成,”原子能机构同位素水文学家Lucía Ortega说,“我们利用这种同位素组分作为水的指纹。”

水从海洋蒸发时,含较轻同位素的分子倾向于先上升。降雨时,含较重同位素的分子会先降落。云朵越往内陆移动,雨中含较轻同位素的分子比例就越高。

雨水降落到地球上,流入湖泊、河流和含水层,Ortega说,“通过测量轻重同位素之间的比例差异,我们可以估算出水的不同来源。”

此外,可以利用水中天然存在的放射性同位素如氚和碳14的丰度以及溶解于水的惰性气体的丰度来估计地下水的水龄 — 从几天到一千年不等。如果发现地下水有数万年历史,则意味着水流非常缓慢,如果开采不当,再度补给可能需要数万年时间。

“这是帮助我们评估水的质量、数量和可持续性的关键,”她说。

water_infographics_-02.jpg

water_infographics_-03.jpg

(信息图表:F. Nassif/原子能机构)

“We look to find out exactly how water moves inside aquifers, how it interacts with rivers, and how much of it is left,” said Sandra Ibáñez, Isotope Hydrologist at the University of Cuyo in Mendoza, who is participating in an IAEA technical cooperation project in the country. The IAEA supports scientists around the world on isotope hydrology, sending experts to the field and training local hydrologists in the use of these isotopic techniques.

Since early 2016, Argentinian isotope hydrologists have been gathering and interpreting data from two strategic regions with the help of the IAEA. The idea is for policy makers to use this information and design improved water management models —hydrological models— for these regions.

“Argentina is lucky to have a very good amount of water per inhabitant, but this water is distributed very unevenly across the country,” said Daniel Cicerone, Environmental Manager at Argentina’s National Atomic Energy Commission (CNEA). “In some regions, finding out if the water we are using on a daily basis is regularly recharged, running out, or at risk of contamination can make the difference between poverty and prosperity.”

water_infographic_-01.jpg

Hidden reserves

The two regions were selected for different reasons. The first region is the arid valley of Mendoza, western Argentina, where people rely on the fresh underground water of the Uspallata and Yaguaráz aquifers, along with other, smaller ones. Authorities are keen to find out whether this water is being sustainably extracted, and if the aquifers have enough capacity to support increased water use.

“We need water for everything. Water is our daily bread,” said Sergio Cirauqui, who works in a kayaking and rafting adventure shop off the top of a mountain in Uspallata. “But we are very conscious of the fact that water is a finite resource and that we have to take care of it. And as a finite resource, we should make almost sacred use of it.”

Argentinian isotope hydrologists have been hiking the mountains and plains of Mendoza for more than a year, collecting water from wells, lakes and rivers accompanied by international and IAEA experts. Back in their labs, they are interpreting the results to paint a clearer picture of what is available.

Based on data such as the recharge rate of water in aquifers, policymakers are in a better position to establish rules for the use of water for drinking, agriculture and industry. Knowing that surface water is infiltrating groundwater, for example, can lead to stricter regulations on acceptable pollution levels.

“Once we have the results, we can decide what business activities to develop in Mendoza,” said Juan Andrés Pina, Deputy Director of the Groundwater Division at Mendoza’s General Department of Irrigation.  

arg6837_1140x640.jpg

Isotope hydrologists take water samples from Mendoza, western Argentina. (Photo: L. Gil/IAEA)

The second region under study is a streambed in Los Gigantes, Córdoba, an old mining complex about 700 km west of Buenos Aires. Here, Argentinian authorities are implementing an environmental remediation project, working side by side with isotope hydrologists to find out more about the quality of the groundwater and its potential vulnerability to contamination.

After the two uranium mines closed, scientists and authorities were vigilant about groundwater in the area. Through the IAEA project, scientists are now monitoring whether water recharging the San Roque lake reservoir, a source for human consumption in the city of Córdoba, is clean and safe.

And while they have found that uranium levels in the groundwater are safe, they are working to find the exact origin and movement of groundwater, including recharge areas, age, volume, behaviour and vulnerability to future contamination. 

“This interdisciplinary and interinstitutional study will help authorities improve the conceptual model and hydrological understanding of the area and strengthen the remediation of the site,” said Daniel Martínez, geologist and researcher at the National Council forScientific and Technological Research (CONICET).   

The regional technical cooperation projects have been essential in transferring knowledge and technology to national and local institutions, said Raúl Ramírez García, Section Head at the IAEA’s Department of Technical Cooperation.

“The new information provided by isotopic techniques will help monitor the water resources and support the kind of decision making that will lead to social and economic benefits for the population of these regions,” Ramírez García said.

arg6772_1140x640.jpg

A farmer prepares ground in the vineyards of Mendoza. Agriculture is the largest consumer of freshwater in the world. (Photo: L. Gil/IAEA)

The SCIENCE

Every water molecule has hydrogen and oxygen atoms, but these are not all the same: some atoms are lighter and some are heavier.

“All natural waters have a different hydrogen and oxygen isotopic composition,” said IAEA isotope hydrologist Lucía Ortega. “We use this isotopic composition as the fingerprints of water.”

As water evaporates from the sea, molecules with lighter isotopes tend to preferentially rise. As rain falls, molecules with heavier isotopes fall sooner. The further the cloud moves inland, the higher the proportion of molecules with light isotopes in rain.

When water falls to the earth, it fills lakes, rivers and aquifers, Ortega said. “By measuring the difference in the proportions between the light and heavy isotopes, we can estimate the origin of different waters.”

In addition, the abundance of naturally occurring radioactive isotopes present in water, such as tritium and carbon 14, and that of noble gas isotopes dissolved in the water, can be used to estimate groundwater age — from a few days to one millennia. When groundwater is found to be tens of thousands of years old, this means that the water flow is very slow and that, if inappropriately extracted, can take tens of thousands of years to replenish again.

“And this is key to help us assess the quality, quantity and sustainability of water,” she said.

water_infographics_-02.jpg

water_infographics_-03.jpg

(Infographics: F. Nassif/IAEA)