谈到肥料,平衡是关键:在合适的时间施合适的量,作物能够茁壮生长,从而有助于养活世界上不断增长的人口;但过量施肥会毁坏植物、污染水土、使全球变暖永久化。那么如何取得适当的平衡?一种方法是借助同位素技术优化施肥,并解决其成为农业污染物和温室气体排放源的影响。
肥料和原子平衡作用可以提高生产力和保护环境
谈到肥料,平衡是关键:在合适的时间施合适的量,作物能够茁壮生长,从而有助于养活世界上不断增长的人口;但过量施肥会毁坏植物、污染水土、使全球变暖永久化。
助农减排
“世界要养活的人口越来越多,但解决办法不只靠肥料。农业部门在过去70年中,很大程度上由于过度使用肥料,逐渐成为温室气体主要来源之一。”Christoph Müller说。他是德国尤斯图斯-李比希大学(吉森)植物生态学研究所和都柏林大学生物学与环境科学学院的土壤和植物专家。据联合国粮食及农业组织(粮农组织)报道,2014年,包括林业和其他土地利用在内的农业部门占全球温室气体排放量的24%。
“我们需要在帮助农民的同时保护环境,但要做到这一点,我们首先需要详细了解肥料如何与土壤和作物相互作用,以及它们何时释放温室气体。”Müller说。“核技术可以帮助我们获得这些细节并找到种植更多粮食的可持续方式,同时最大限度地减少环境影响。”
在植物和土壤将肥料转化为有用养分时,作为副产品会释放一些温室气体:二氧化碳(CO2)、一氧化二氮(N2O)和甲烷(CH4)。适量施肥,植物会茁壮生长,释放的温室气体也最少。但施肥远超出植物吸收能力时,多余肥料就会留在土壤中,导致排放量呈指数增加。
Müller和来自九个国家的科学家以及原子能机构的专家与粮农组织合作,正在追踪同位素,以了解肥料、作物、土壤和温室气体排放之间的联系(见“科学”栏)。在一种“自由空气二氧化碳浓度”实验中,科学家正在研究随气候变化而来的大气中CO2浓度升高对作物质量和肥料需求产生的影响,同位素技术也被用作实验的一部分。他们的同位素研究结果将用于制定导则,以帮助减少农业施肥,同时不损害作物质量和产量。
他们的研究结果揭示了如何在100多公顷面积的牧草及水稻、玉米和小麦作物区优化施肥:温室气体排放减少了50%,作物产量增加了10%。
“我们在‘自由空气二氧化碳浓度’实验中还发现植物生长更快,但质量发生变化。”Müller说。“自由空气二氧化碳浓度”实验为处于自然条件下的大型气候变化设施。德国吉森试验场是开展这类研究实验时间最久的设施之一,它模拟到本世纪中叶典型草原上的大气CO2状况。
在这些高浓度CO2状况下生长的植物变得更坚韧,但蛋白质含量下降。奶牛食用这些植物后,它们的胃必须更加努力地蠕动,它们必须多吃才能摄取足够的营养产奶。这不仅有损牛奶产量,还会使奶牛排放更多甲烷。甲烷的效力是CO2的34倍。

自由空气二氧化碳浓度”实验通过管道将富含CO2的空气泵入几个试验场地,以模拟预计到本世纪中叶典型草场上的大气CO2状况。(图/德国尤斯图斯-李比希大学C. Müller)
饮用水及其他地方中的肥料
除了导致温室气体排放外,多余肥料经常被雨水或融雪冲到河流和溪流中,最终进入海洋和饮用水供应。
“农业污染物会使水无法饮用,危害水生生态系统和生物多样性。”粮农组织/原子能机构粮农核技术联合处水土管理及作物营养科科长LeeHeng说。“例如,肥料中的营养物质会促进藻类生长,从而降低水中的含氧量,危害鱼类和水生生物。”
肥料是污染环境的几种农业化学品之一。其他包括杀虫剂、灌溉盐化、沉积物和牲畜药物残留物。Heng说,随着粮食生产者寻求增加粮食产量的方法,同时应对气候变化的影响,这些物质的使用不断增加。
来自15个国家的科学家正在与粮农组织/原子能机构联合处的专家合作,追踪多种稳定同位素,以分析农业污染物及其来源和迁移(见“科学”栏)。这些技术将作为工具包用于确定农业污染物来源,并发展创新型可持续实践,以抵消其过度使用和对环境的影响。
20多年来,科学家们一直使用单一同位素来识别农业污染物,但是一次使用一种同位素并不能提供足够的信息,以区分不同的污染物及其独特的同位素特征。
“分析多种同位素可以更全面地了解每种来源的每种化学物质的相对贡献,以便科学家们可以知道采取哪种方案来处理田间和景观中的污染物。”Heng说。
Helping farmers while cutting greenhouse gas emissions
“There are more mouths to feed worldwide than ever before, but the answer is not more fertilizer — the overuse of fertilizer is a big part of why the agriculture sector has gradually become one of the major sources of greenhouse gases over the last 70 years,” said Christoph Müller, a soil and plant expert at the Institute of Plant Ecology, Justus Liebig University Giessen in Germany and at the School of Biology and Environmental Science at University College Dublin. In 2014, the agriculture sector, including forestry and other land use, accounted for 24% of global greenhouse gas emissions, according to the Food and Agriculture Organization of the United Nations (FAO).
“We need to protect the environment while helping farmers, but to do that, we first need a detailed understanding of how fertilizers interact with soil and crops, and at what point they release greenhouse gases,” said Müller. “Nuclear techniques can help us get those details and find sustainable ways to grow more food while minimizing the environmental impact.”
As plants and soil convert fertilizer into useful nutrients, some of the by-products are greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). With the right amount of fertilizer, plants thrive and minimal greenhouse gases are released. However, when there is too much fertilizer for plants to process and a surplus is left in the soil, it causes an exponential increase in emissions.
Müller and scientists from nine countries along with experts from the IAEA, in partnership with the FAO, are tracking isotopes to understand the link between fertilizer, crops, soil and greenhouse gas emissions (see Stable isotope techniques). These techniques are also being used as part of a Free-Air CO2 Enrichment (FACE) experiment, which is helping scientists to study how crop quality and fertilizer needs can be affected by the higher levels of CO2 in the atmosphere associated with climate change. The findings of their isotopic studies will be used to develop guidelines to help reduce fertilizer use in agriculture, without compromising crop quality and yield.
Their research results have already revealed ways to optimize fertilizer use on an area of over 100 hectares with pasture and rice, maize and wheat crops: greenhouse gas emissions were reduced by 50% and crop yields increased by 10%.
“We have also seen in our FACE experiment that plants are growing more, but their quality is changing,” said Müller. FACE is a large-scale climate change facility under natural conditions. The test site in Giessen, Germany is one of the longest running studies of this kind simulating the atmospheric CO2 conditions over typical grassland expected by the middle of this century.
Plants grown in these high CO2 conditions become tougher and their protein content drops. As cows graze on these plants, their stomachs have to work harder and they have to eat more to extract enough nutrients to produce milk. This not only jeopardizes milk production but also causes the cows to emit more methane — a greenhouse gas 34 times more potent than CO2.

The Free-Air CO2 Enrichment (FACE) experiment pumps CO2 enriched air into several test sites through rings of pipes to simulate atmospheric CO2 conditions over typical grassland expected by the middle of this century. (Photo: C. Müller/Justus Liebig University Giessen)
Finding fertilizer in drinking water and beyond
Alongside contributing to greenhouse gas emissions, excess fertilizer is often washed away into rivers and streams by rain or melting snow, ending up in the ocean and drinking water supplies.
“Agro-contaminants can make water undrinkable and harm aquatic ecosystems and biodiversity,” said Lee Heng, Head of the Soil and Water Management and Crop Nutrition Section at the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. “Fertilizer, for example, can constitute a main source of heavy metals and radionuclides, which can be taken up by plants, consumed by human and animals. The nutrients in fertilizer can also encourage algae growth, which lowers oxygen levels in water and harms fish and aquatic life.”
Fertilizers are one of several agricultural chemicals that contaminate the environment. Others include pesticides, salt from irrigation, sediments and drug residues from livestock. The use of these substances is rising as food producers seek ways to increase food production while combating the effects of climate change, said Heng.
Scientists from 15 countries are working with experts from the Joint FAO/IAEA Division to track multiple stable isotopes to analyse agro-contaminants, their origins, and movement (see Stable isotope techniques).These techniques will form a toolkit for identifying agro-contaminant sources and developing innovative sustainable practices to counteract their overuse and impact on the environment.
For over 20 years, scientists have used single isotopes to identify agro-contaminants, but using one isotope at a time does not provide enough information to distinguish between different contaminants and their distinctive isotopic signatures.
“Analysing multiple isotopes allows for a more complete picture of the relative contribution of each chemical from each source, so scientists can know which approach to take to deal with contaminants in fields and across landscapes,” Heng said.