国际原子能机构专家组称,核技术将为未来的太空任务提供动力

由于核能和相关技术的发展,星际任务有望变得更快、更有效并更经济,人类正准备进入一个前往火星、太阳系,甚至更远星际的太空旅行新时代。这是公共和私营部门的国际专家在国际原子能机构(原子能机构)举办的网络研讨会——“原子用于太空:用于太空探索的核系统”上得出的结论。

参加国际原子能机构网络研讨会“原子用于太空:用于太空探索的核系统”的专家一致认为核技术将继续在未来的空间任务中发挥重要作用。(照片来源: Shutterstock)

由于核能和相关技术的发展,星际任务有望变得更快、更有效并更经济,人类正准备进入一个前往火星、太阳系,甚至更远星际的太空旅行新时代。这是公共和私营部门的国际专家在国际原子能机构(原子能机构)举办的网络研讨会——“原子用于太空:用于太空探索的核系统”上得出的结论。

专家组强调,核裂变和核聚变方面的发展对未来的深空旅行不可或缺。核能可以为机载系统和仪器提供电力,并为人类在太阳系天体上的持续存在提供动力。

原子能机构副总干事兼核能部主任米哈伊尔・丘达科夫说:“长期以来,核技术在重要的太空任务中发挥了显著的作用。但未来的太空任务可以依靠核动力系统进行更广泛的应用。我们通往行星的道路是通过原子来实现的。”

核裂变通过分裂原子核获得能量,而核聚变通过连接原子核,在此过程中释放能量。研讨会的与会者听取了可将核裂变和聚变用于航天器推进、地球外表面动力和飞船上系统动力的系统的相关探讨。

航天器推进和飞船上系统动力

从地球升空的火箭在可预见的未来将依赖化学燃料。然而,一旦进入轨道,核引擎可以接管并提供推进力,为航天器在太空中的飞行加速。

“对于需要高电力输出的太空任务,如人类火星任务或太空渡轮,基于裂变反应堆的动力系统可以是一个非常有竞争力的选择,”北京航天器系统工程研究所的杜辉说,他引用了中国空间技术研究院2015年的一项研究。该研究发现,如果没有太空核反应堆,人类火星任务是不可行的。

放射性同位素热电发电机(RTGs)在远离太阳的几十年里为旅行者号航天器提供了动力。在讨论中,专家们强调了RTGs在艰难的太空低温条件下为未来航天器的机载系统长期供热和供电的潜力,并且无需对其进行任何维护。

美国国家航空航天局(NASA)前首席项目工程师William Emrich说:“几乎可以肯定的是,未来的载人星际任务需要性能水平大大超过今天最好的化学发动机的推进系统。核热推进(NTP)是一个可以用于太空旅行的可靠选择。”

在核热推进中,一个核裂变反应堆加热液体推进剂,如氢气。热量将液体转化为气体,通过一个喷嘴膨胀,提供推力,推动航天器。核热推进的优点在于使人类可以向太空运送更少的燃料,核热推进引擎也会缩短旅行时间。与传统的化学火箭相比,核热推进的这些优点可以将前往火星的时间缩短25%。此外,缩短在太空中的时间还可以减少宇航员对宇宙辐射的暴露。

另一方面,核电推进(NEP)也是一种选择,其通过将核反应堆的热能转换为电能提供推力,消除了相关的核电需求和在机上储存推进剂的限制。在核电推进中,推力较小,但持续不断,燃料效率远高于传统的化学火箭,因此速度更高,到火星的运输时间可能会缩短60%以上。

艾德·阿斯特拉火箭公司(Ad Astra Rocket Company)正在开发的一个核电推进系统,即可变比冲磁等离子体火箭(VASIMR),是一种等离子体火箭,其中电场加热并加速推进剂,形成等离子体,当等离子体从发动机中喷出时,磁场将其引导至适当的方向,为航天器产生推力。与传统的核电推进不同,可变比冲磁等离子体火箭的设计将能够处理大量的动力,同时保留电火箭特有的高燃料效率。

艾德·阿斯特拉火箭公司首席执行官Franklin Chang Díaz说:“从短期来看,我们设想可变比冲磁等离子体火箭发动机支持广泛的高功率应用,从近月空间的太阳能电力到星际空间的核电。从长远来看,可变比冲磁等离子体火箭可能是未来仍处于概念阶段的聚变火箭的先驱。”

聚变火箭,如普林斯顿等离子体物理实验室正在开发的普林斯顿反转场装置反应堆(Princeton Field Reversed Configuration reactor)概念,将具有产生直接聚变驱动(DFD)的优势——直接将聚变反应中产生的带电粒子的能量转换为航天器的推进力。

普林斯顿卫星系统公司(Princeton Satellite Systems)副总裁Stephanie Thomas说:“直接聚变驱动可以产生比其他系统高几个数量级的特定功率,减少旅行时间,增加有效载荷,从而使我们能够更快地到达深空目的地。”此外,她还讨论了可能由直接聚变驱动供电的进入近恒星空间的任务、人类火星任务和月球基地表面动力。她还解释说,直接聚变驱动会具有体积小和对燃料需求少的优势——几公斤就可以为一个航天器提供十年的动力。

Stephanie Thomas还说:“未来基于核的推力解决方案,如直接聚变驱动,也可能同时提供电力。我们的研究表明,直接驱动核聚变动力火箭发动机可以从一个发动机产生电力和推进力,性能最佳。”

chang_e_3.jpg

嫦娥三号使用了同位素热单元(RHUs)帮助着陆器和巡视器渡过月夜。(图片来源:中国空间技术研究院)

地球外表面动力

核反应堆也可用于为宇航员提供可靠的表面动力来源,用于长期探索任务,也可能用于帮助人类在其他行星体上持续存在,为其提供几十年的电力而不需要补充燃料。裂变表面动力反应堆的设计是微型反应堆,可在一至数十年期间提供几十千瓦的电力。当前的重点是使用低浓缩铀燃料或高测定的低浓铀燃料。

美国国家航空航天局空间核技术组合经理Anthony Calomino说:“美国国家航空航天局的优先重点仍然是设计、建造和演示一个低浓铀裂变表面动力系统,该系统在月球表面计划以及我们最终的人类火星任务中具有广泛的应用。该系统可扩展到100千瓦以上的功率水平,并有可能推动核电推进系统的需求。”

通用原子全球公司(General Atomics Global Corporation)首席执行官Vivek Lall说:“使用核裂变反应堆,进行连续多年的连锁反应,对于太空推进和地球外地面动力来说都是不可避免的。”

“原子用于太空:用于太空探索的核系统”网络研讨会于今年年初举行,为期两天,来自六十六个国家的五百多人参加了本次研讨会。

Spacecraft propulsion

Rockets lifting off from Earth will depend on chemical fuels for the foreseeable future. However, once in orbit, nuclear engines could take over and provide propulsion to accelerate spacecraft through space.

“Crewed interplanetary missions of the future will almost certainly require propulsion systems with performance levels greatly exceeding that of today’s best chemical engines,” said William Emrich, former Lead Project Engineer at NASA, adding that a solid candidate to be used for space travel is nuclear thermal propulsion (NTP).

In NTP, a nuclear fission reactor heats up a liquid propellant, like hydrogen. The heat converts the liquid into a gas, which expands through a nozzle to provide thrust and propel a spacecraft. The advantages of NTP are that space flights would need to lift less fuel into space, and NTP engines would reduce trip times – cutting travel time to Mars by up to 25 per cent compared traditional chemical rockets. Reduced time in space also reduces astronauts’ exposure to cosmic radiation.

Nuclear electric propulsion (NEP), on the other hand, is an option in which the thrust is provided by converting the thermal energy from a nuclear reactor into electrical energy, eliminating the associated NTP needs and limitations of storing propellants onboard. In NEP, the thrust is lower but continuous, and the fuel efficiency far greater, resulting in a higher speed and potentially over 60 per cent reduction in transit time to Mars compared to traditional chemical rockets.

“For space missions that need high electric power output, such as a human Mars mission or space ferries, a fission reactor-based power system can be a very competitive choice,” said Hui Du of the Beijing Institute of Spacecraft System Engineering, citing a China Academy of Space Technology study in 2015, which found that a human Mars mission would not be feasible without space nuclear reactors.

An NEP system being developed by Ad Astra Rocket Company, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR), is a plasma rocket in which electric fields heat and accelerate a propellant, forming a plasma, and magnetic fields direct the plasma in the proper direction as it is ejected from the engine, creating thrust for the spacecraft. Unlike traditional NEP, the VASIMR design would enable the processing of large amounts of power while retaining the high fuel efficiency that characterizes electric rockets.

“In the near term, we envision the VASIMR engine supporting a wide array of high-power applications from solar electric in cislunar space, to nuclear-electric in interplanetary space,” said Franklin Chang Díaz, CEO of Ad Astra Rocket Company. “On a longer term, the VASIMR could be a precursor to future fusion rockets still in the conceptual stage,” he added.

Fusion rockets, like the Princeton Field Reversed Configuration reactor concept under development at the Princeton Plasma Physics Laboratory, would have the advantage of producing a direct fusion drive (DFD), directly converting the energy of the charged particles produced in the fusion reactions into propulsion for the spacecraft.

“A DFD can produce specific power several orders of magnitude higher than other systems, reducing trip times and increasing payloads, thus enabling us to reach deep space destinations much faster,” said Stephanie Thomas, Vice President of Princeton Satellite Systems, who discussed possible DFD-powered missions into near-interstellar space, human Mars missions and lunar base surface power. She also explained that a DFD could have the advantages of its small size and the need for very little fuel – a few kilograms could power a spacecraft for ten years.

Extra-terrestrial surface power

Nuclear reactors could also be used to provide astronauts with a reliable source of surface power for extended exploration missions and a possible sustained human presence on other planetary bodies, supplying power for decades without need for refuelling. Fission surface power reactor designs are microreactors that could provide electrical power in the range of tens of kW for a period spanning from one to a few decades. The current focus is on using low enriched uranium fuels or high-assay low enriched uranium fuels.

“NASA’s priority focus remains on designing, building and demonstrating a low enriched uranium fission surface power system that has broad applications for the lunar surface initiative as well as our eventual mission to Mars with humans, scalable to power levels above 100 kWe, and has the potential to advance NEP system needs,” said Anthony Calomino, Space Nuclear Technology Portfolio Manager at NASA.

“Use of nuclear fission reactors, carrying out continuous chain reactions for many years, is inevitable both for space propulsion and for extraterrestrial surface power,” said Vivek Lall, Chief Executive of General Atomics Global Corporation. 

Power for onboard spaceship systems

Besides thrust, spaceships need electrical power to maintain life support systems, communications and other hardware. Radioisotope thermoelectric generators (RTGs), which have powered the Voyager spacecraft over several decades far away from the sun, were highlighted for their potential to supply long-term heat and electricity to future spacecraft onboard systems in the cold temperatures of hard space, without any maintenance.

Future nuclear-based solutions for thrust, such as the DFD, might also simultaneously be able to provide electricity. “Our studies show that a direct drive fusion-powered rocket engine can produce both power and thrust with the best performance, generating electric power and propulsion from a single engine,” said Thomas.

Over five-hundred people from 66 countries attended the two-day webinar on 15 to 16 February.

相关资源