核技术揭示乌干达土壤侵蚀的深度

数百万乌干达人的生计根植于高原,即这个东非国家的山区或高地区域。

乌干达西南高原山地农业区受到土壤侵蚀的影响。(照片来源:E. Fulajtar/原子能机构)

数百万乌干达人的生计根植于高原,即这个东非国家的山区或高地区域。乌干达的高原分布在东西两侧边境,是该国4600万人口中约40%的人的家园。据该国农业、牧业和渔业部数据,这些区域在农业中扮演着重要角色,而农业是许多乌干达人(包括70%的劳动妇女)的主要收入来源。这些区域也被认为是土壤侵蚀导致的土地退化现象严重的关键热点之一。

这些维系生命的重要土地是最近完成的一项研究的主题,该研究由首都坎帕拉的国家农业研究实验室进行,得到了与联合国粮食及农业组织(粮农组织)结成伙伴关系的原子能机构的支助。专家利用核技术评定高原的土壤侵蚀率,以作为决策者、农民和其他利益相关方为逆转或至少减轻土地退化应采取的行动的依据。“作为国家农业研究组织的一个下属机构,自2013年以来,国家农业研究实验室在发展侵蚀研究能力方面一直受益于技术合作计划。在2016年至2017年期间,国家农业研究实验室的工作人员完成了在土壤取样、分析土壤中可作为侵蚀示踪剂的放射性核素铯-137和使用相关设备方面的培训,”原子能机构计划管理官员Valentina Varbanova说。  

该研究包括在西南高原鲁班达区的梯田上对斜坡横断面进行取样。结果表明大多数梯田遭受了侵蚀,在过去60年中流失了约12.6厘米的表土,这表明为保持乌干达高原陡坡上的土壤而采用的传统梯田技术效果不足。

“这些高原降雨量大、温度适中、易于定居,因此人口稠密、农业开发密集,”粮农组织/原子能机构粮农核技术联合中心的土壤科学家Emil Fulajtar说。“这种土地以位于约30度至40度陡坡上的小型家庭农场为主。”雨水可以轻易冲走表土(土壤剖面最肥沃的部分),因此这些地区受到土地退化的威胁。

erosion-degraded-fields-1140x640.png

退化严重的田地失去生产潜力而遭抛弃。(照片来源:E. Fulajtar/原子能机构)

核技术用于评定和验证测量结果

来自乌干达、卢旺达和中国的研究人员使用常规的非核建模方法评价了该国的土壤侵蚀情况,最近一次是在2017年。通用土壤流失方程是一种描述长期年平均侵蚀率的数学模型,通过该模型获得的结果表明,高原的平均土壤侵蚀率在每年每公顷10吨至100吨之间,通常超过每年每公顷100吨。 高原的侵蚀率超过了该国平均的每年每公顷3.2吨,这突显出需要采取土壤保持措施,才能确保可持续农业生产。这些模型提供的估计速率缺乏需要通过现场测量才能获得的验证。

研究人员使用铯-137放射性核素作为示踪剂,对41个土壤剖面进行了取样,以测量侵蚀率。“只有四个土壤剖面是稳定的,即显示既没有侵蚀也没有沉积;六个剖面显示出了沉积,即积累了由于侵蚀而产生的沉积物,从而改变了土地的形状,”Fulajtar说。其余31个剖面被侵蚀,最大侵蚀率为每年每公顷96吨,平均侵蚀率为每年每公顷30.4吨。利用铯-137获得的现场测量结果支持采用通用土壤流失方程计算出的估计值。铯-137法(见利用散落放射性核素评定土壤侵蚀)已通过原子能机构的技术合作计划协调研究项目在70多个国家被用于测量侵蚀率并验证保持法的效率。

由于沉积和侵蚀剖面数量之间的差异,Fulajtar总结道:“大多数被侵蚀土壤被从耕种的梯田斜坡上带走,最终到达了坡麓和山谷,或以河流和湖泊中悬浮沉积物的形式存在”,而这随之影响了水资源的质量。

20世纪60年代早期,铯-137经核武器试验释放到大气中并沉积在地球表面,自那之后直到2018年取样时,超过60%(或12.6厘米)的耕种表土层已被侵蚀殆尽。“需要采取额外的土壤保持措施,”Fulajtar说,并提出了三种有希望的方案:免耕土地管理以减轻由降雨造成的土壤侵蚀,同时增加渗入土壤的水量;转向耕种土壤保持效率更高的作物,例如从木薯、高粱、豌豆和豆类到小麦或其他密集播种的作物;建造防侵蚀沟渠来阻止径流和沉积物的位移。

乌干达的《国家环境状况报告》中报告了原子能机构开展的研究,以有助于在环境问题上为决策者提供指导。“决策者需要有关土壤侵蚀率、其对民生的影响和不同土壤保持措施有效性的信息,以使他们能够通过相关政策、规章和条例,促进对420万小农户赖以谋生的自然资源的可持续利用,”国家农业研究实验室的Crammer Kayuki Kaizzi说。“通过更好的水土管理减轻土壤侵蚀,这将减少河流、湖泊和其他开放水域的淤积,从而造福环境、小农场主和生活在农村地区的人们。由于大多数人依靠未受保护的泉水和开放性水井供家庭使用,因此能获取优质水至关重要。”

rill-erosion-1140x640.png

细沟侵蚀现象,即径流水形成小渠道,在乌干达高原的一些田地中大量存在。(照片来源:E. Fulajtar/原子能机构)

erosion-degraded-fields-1140x640.png

Strongly degraded fields lose their production potential and are abandoned. (Photo: E. Fulajtar/IAEA)

Nuclear techniques for assessing and validating measurements

Researchers from Uganda, Rwanda and China had evaluated soil erosion in the country, most recently in 2017, using a conventional non-nuclear modelling method. The results obtained by the Universal Soil Loss Equation (USLE) – a mathematical model that describes the long term average annual rate of erosion – suggested that the mean rate of soil erosion in the highlands is between 10 and 100 tonnes per hectare per year (t/ha/y), commonly reaching more than 100 t/ha/y. The highlands’ rates exceeded the country’s average of 3.2 t/ha/y and highlighted the need for soil conservation measures to ensure sustainable agricultural production. The estimated rates provided by those models lacked validation that needed to be obtained by field measurements.

Using Cs-137 radionuclide as a tracer, researchers sampled 41 soil profiles to measure erosion rates. “Only four soil profiles were stable – showing neither erosion nor deposition – and six profiles showed deposition, where sediments from erosion have accumulated, altering the shape of the land,” Fulajtar said. The remaining 31 profiles were eroded, with a maximum erosion rate of 96 t/ha/y and average rate of 30.4 t/ha/y. The field measurements obtained with Cs-137 supported estimates calculated by the USLE. The Cs-137 method (see Fallout radionuclides to assess soil erosion) has been applied in over 70 countries through the IAEA’s technical cooperation programme and coordinated research projects to measure erosion rates and validate the efficiency of conservation methods.

Because of the discrepancy between the number of deposition and erosion profiles, Fulajtar concluded that “most eroded soil was removed from the cultivated terraced slopes and ended up on foot slopes and valleys or as suspended sediment in rivers and lakes,” which subsequently affects the quality of water resources.

Since the early 1960s – when Cs-137 was released into the atmosphere from nuclear weapons tests and deposited on the Earth’s surface – until the time of sampling in 2018, more than 60 per cent – or 12.6 cm – of the cultivated topsoil layer had been lost to erosion. Additional soil conservation measures are needed, Fulajtar said, suggesting three promising approaches: no-tillage land management to reduce soil erosion caused by rainfall, while increasing the amount of water that infiltrates into the soil; switching to crops with higher soil conserving efficiency, for example from cassava, sorghum, peas and beans to wheat or other densely seeded crops; and erosion ditches to stop runoff and the displacement of sediments.

The IAEA studies were reported in Uganda's National State of the Environment Reports to help guide decision makers on environmental issues. “Policy makers need information on the rates of soil erosion, its effect on people’s livelihood and the effectiveness of the different soil conservation measures to enable them to pass relevant policies, by-laws and ordinances for the sustainable use of natural resources on which 4.2 million smallholder farming households derive their livelihood,” said Crammer Kayuki Kaizzi of NARL. “Reduced soil erosion through better soil and water management will result in reduced siltation of rivers, lakes and other open waters to benefit the environment, smallholder farmers and people living in rural areas. Access to quality water is important since the majority rely on unprotected springs and open wells for domestic use.”

rill-erosion-1140x640.png

Rill erosion, when runoff water forms small channels, is abundant at some fields in Uganda’s highlands. (Photo: E. Fulajtar/IAEA)