解决津巴布韦的干旱问题:应用核科学了解地下水和河流动态

更频繁、更剧烈和更不可预测的干旱夺走了津巴布韦居民和农民充足的清洁淡水,影响了粮食安全,威胁到45%的农村人口生计。城市地区也受到影响。津巴布韦严重依赖水电作为电力来源,其能源网因长期干旱而瘫痪,导致城镇经常出现电力短缺和停电。为津巴布韦长期缺水问题寻找解决方案,包括依靠利用核技术制定地下水开采准则,需要充分了解地表水与地下水的相互作用以及津巴布韦的水资源。

非洲最大的瀑布维多利亚瀑布一直是该地区干旱的受害者,而与其两岸接壤的津巴布韦也在深受其害。(照片来源: Sammy Wong)

维多利亚瀑布的轰鸣声在当地洛齐语中称之为“Mosi-oa-Tunya”,即“咆哮的云雾”,但到2019年底,更像是涓涓细流。这个非洲最大的瀑布一直是该地区干旱的受害者,而与其两岸接壤的津巴布韦也在深受其害。

更频繁、更剧烈和更不可预测的干旱夺走了津巴布韦居民和农民充足的清洁淡水,影响了粮食安全,威胁到45%的农村人口生计。城市地区也受到影响。津巴布韦严重依赖水电作为电力来源,其能源网因长期干旱而瘫痪,导致城镇经常出现电力短缺和停电。

为津巴布韦长期缺水问题寻找解决方案,包括依靠利用核技术制定地下水开采准则,需要充分了解地表水与地下水的相互作用以及津巴布韦的水资源。

通过其技术合作计划,原子能机构与津巴布韦大学、津巴布韦国家水务局、环境管理局和亥姆霍兹环境研究中心合作,正在寻求利用同位素水文学揭示津巴布韦地下水和河流系统如何相互作用。他们的研究结果将有助于津巴布韦更好地管理淡水资源,应对水污染,以及确保对津巴布韦人民的安全供水。

“津巴布韦雨水主要降于11月至次年3月;一年中其他时间长期处于旱季。而且,最近,每五年才有两次好雨。”津巴布韦大学建筑和土木工程系前主任AlexanderMhizha说,“因此,我们越来越不得不依赖地下水,但对含水层补给区和补给率的了解有限。培训科学家和加强实验室是更好地管理我们水供应的关键。”

原子能机构负责津巴布韦计划管理官员Anna Grigoryan说,原子能机构地区和国家项目重点关注在津巴布韦国内开展培训和支持伙伴关系。“通过协调水务利益相关者之间应对干旱措施,津巴布韦决策者可以作出明智的选择,并促进国家供水可持续管理。”

对优质水的需求

干旱造成的缺水不是唯一的问题;缺乏清洁用水日益严重。

河水很容易受到污染,并且容易受到许多类型的污染物影响。原子能机构同位素水文学家Ioannis Matiatos说:“如果河被污染,污染会自动流向地下水,而这两个水体并不相互隔离,因此了解它们如何相互作用极其重要,不仅在水量方面,而且在水质方面也是如此。”

“通过使用氧和氢的稳定同位素以及天然存在的放射性同位素,如氚和氡-222进行水追踪,我们可以更好地了解河流和地下水系统的复杂动态。”他说,这使科学家们能够了解哪个水体受到污染,以及如何补充水体。

在萨韦尔集水区,即原子能机构项目的重点地区,河水和地下水在提供清洁饮用水以及城市和农业用水方面都很重要。该集水区位于津巴布韦东部,在旱季降雨量有限,容易发生干旱。随着人口的增长和经济对农业的依赖,集水区的水需求在增长。

对科学家进行同位素技术培训

为了更好地了解河水和地下水之间的关系,2018年,来自津巴布韦大学的同行们在埃塞俄比亚亚的斯亚贝巴大学接受了培训,同年年底,在原子能机构维也纳实验室,Alexander Mhizha学会了如何评价地质、水文化学和水文数据,以及为研究场地设计现场取样活动。

2021年6月,来自德国莱比锡亥姆霍兹环境研究中心的专家为津巴布韦专家举办了为期五天的虚拟培训班。学员们接受了同位素水文学基本原理的指导,特别强调了使用稳定和放射性示踪剂作为调查地表水与地下水相互作用、地下水测年技术和含水层易受污染性的工具。

莱比锡亥姆霍兹中心矿物学家、培训班教员Michael Schubert说:“当地研究人员研究的同位素结果将有助于确定津巴布韦国家地下水管理系统需要应对的挑战,进而使该国供水管理更加可持续。”

The need for quality water

A water shortage from droughts is not the only problem; a lack of clean water is a growing issue.

River water is susceptible to contamination and is open to many types of pollutants. “If the river is contaminated, the contamination will automatically flow through to the groundwater. As these two water bodies are not isolated from each other, it is extremely important to understand how they interact with each other, not only in terms of water amounts but also in terms of water quality,” said Ioannis Matiatos, isotope hydrologist at the IAEA.

“By using stable isotopes of oxygen and hydrogen and naturally occurring radioactive isotopes such as tritium and radon-222 to trace water, we can better understand the complex dynamics of river and groundwater systems,” he said. This allows scientists to understand which water body is contaminated and how to replenish it.

Both river and groundwater are important in providing clean water for drinking, urban, and agricultural use within the Save Catchment — the focus area of the IAEA project. Located in the eastern part of Zimbabwe, the catchment receives limited rainfall during its dry season, leaving it prone to drought. With a growing population and an economy reliant on agriculture, the demand for water in the catchment area is growing.

Training scientists on isotopic techniques

To better understand the relationship between river water and groundwater, counterparts from the University of Zimbabwe received training in 2018 at Addis Ababa University in Ethiopia, and at the end of that year, Mhizha learned at the IAEA laboratories in Vienna, how to evaluate geological, hydro-chemical and hydrological data, and design a field sampling campaign for the study sites.

In June 2021 experts from the Helmholtz Centre in Leipzig, Germany, conducted a five-day virtual training course with local experts. They were instructed in the basic principles of isotope hydrology with special emphasis on the use of stable and radioactive tracers as tools to investigate surface water-groundwater interactions; groundwater dating techniques; and the vulnerability of aquifers to contamination.

This online training will be followed with an in-person expert visit to the country by the end of the year, to further train Zimbabwean experts on sampling and analytical techniques, interpretation of results, and in using specialised laboratory equipment. Local scientists will then be able to independently continue isotopic analysis over several seasons to generate data and understand interactions between the different components of the water cycle.

“The isotopic results found by local researchers will help identify the challenges Zimbabwe’s national groundwater management system needs to tackle and, in turn, enable more sustainable management of the country’s water supply,” said Michael Schubert, a mineralogist at the Centre in Leipzig and one of the trainers of the course. 

THE SCIENCE

Using environmental isotopes to trace surface water and groundwater pathways

Bodies of water are naturally labelled with unique isotopic signatures. A laser spectroscopic analyser is used to determine the unique isotopic signature or fingerprint based on the relative proportion of the different isotopes present in a water sample. By using these signatures, water origin and movement can be tracked through the entire water cycle.

Naturally occurring radioactive isotopes, such as radon-222 (Rn-222), tritium (hydrogen-3), carbon-14 (C-14) are powerful tools that allow scientists to date very young to old groundwater systems and trace their contribution in river water discharge. This information informs water specialists on the nature, history and flow of sampled river and groundwater and helps them calibrate and improve numerical models that predict the response of rivers and aquifers to abstractions and climate change.