什么是核聚变?

解读“核”

核聚变是两个轻原子核结合成一个较重的原子核并释放出巨大能量的过程。核聚变反应发生在一种被称为等离子体的物质状态中——一种由正离子和自由移动的电子组成的高温带电气体,具有不同于固体、液体或气体的独特性质。

核聚变是两个轻原子核结合成一个较重的原子核并释放出巨大能量的过程。

核聚变反应发生在一种被称为等离子体的物质状态中——一种由正离子和自由移动的电子组成的高温带电气体,具有不同于固体、液体或气体的独特性质。

太阳和其他所有的恒星都是由这种反应所驱动的。为了在太阳中实现聚变,原子核需要在大约1000万摄氏度的极高温度下相互碰撞。高温为它们提供了足够的能量,以克服相互之间的电排斥力。一旦原子核进入彼此非常接近的范围,它们之间的核吸引力将超过电排斥力,从而使它们能够实现聚变。要做到这一点,众多原子核必须被约束在一个小空间内,以增加碰撞的机会。在太阳中,其巨大的引力所产生的极端压力为核聚变创造了条件。

为什么科学家们要研究核聚变能源?

自从20世纪30年代我们理解核聚变理论以来,科学家,以及越来越多的工程师,一直在寻求重新创造和利用核聚变的机会。这是因为如果核聚变能够以工业规模在地球上复制,它可以提供几乎无限的清洁、安全和负担得起的能源,以满足世界的需求。

核聚变每公斤燃料可以产生比核裂变(用于核电厂)多四倍的能量,比燃烧石油或煤炭多近四百万倍的能量。

大多数正在开发的聚变反应堆概念将使用氘和氚的混合物——含有额外中子的氢原子。理论上,只要有几克这些反应物,就可以产生一万亿焦耳的能量,这大约是一个发达国家里一个人60年所需的能量。

聚变燃料很丰富,也很容易获得:氘可以从海水中廉价提取,而氚则可以利用聚变产生的中子与丰富的天然锂反应产生。这些燃料供应可持续数百万年之久。未来的聚变反应堆在本质上也是安全的,不会产生高放射性、长衰变期的核废物。此外,由于核聚变过程难以启动和维持,因此不存在失控反应和熔毁的风险;核聚变只能在严格的操作条件下发生,超出这个条件(例如在事故或系统故障的情况下),等离子体将自然终止,很快失去其能量,并在对反应堆造成任何持续损害之前熄灭。

重要的是,核聚变,就像裂变一样,不会向大气层排放二氧化碳或其他温室气体,因此,从本世纪下半叶起,它可能成为低碳电力的长期来源。

比太阳还热

太阳具有巨大引力,自然会诱发核聚变,但如果没有这种引力,就需要比太阳更高的温度才能发生反应。在地球上,我们需要超过1亿摄氏度的温度和强大的压力,以使氘和氚发生聚变,同时还需要充分的约束,使等离子体和核聚变反应维持足够长的时间,使产生的能量大于启动反应所需的能量。

虽然目前在实验中通常已实现非常接近核聚变反应堆所需的条件,但仍需要改进约束性能和等离子体的稳定性,以维持反应并持续产生能量。来自世界各地的科学家和工程师继续开发和测试新材料,设计新技术,以获得净核聚变能。

请观看以下视频,获取更多信息:

聚变能源的未来

考虑到从核聚变中提供能源被广泛认为是21世纪巨大的工程挑战。要使核聚变发电在商业上可行,需要做些什么呢?

我们在核聚变技术发展方面处于什么位置?

50多个国家在开展核聚变和等离子体物理研究,尽管迄今为止,产生的能量还没有超过启动反应过程所需的能量,但许多实验已成功实现聚变反应。专家们已经提出了可以使核聚变发生的不同设计和基于磁铁的机器,如仿星器和托卡马克,但也有依靠激光、线性装置和先进燃料的方法

核聚变能源需要多长时间才能成功推广,这将取决于通过全球伙伴关系和合作调动资源,以及该行业能够以多快的速度开发、验证和鉴定新兴核聚变技术。另一个重要问题是,同时开发必要的核基础设施,如与实现这一未来能源有关的要求、标准和良好实践。

经过10年的组件设计、场地准备和全球制造,世界上最大的国际聚变设施——国际热核聚变实验堆(ITER)的组装工作于2020年在法国开始。ITER是一个国际项目,目的是论证核聚变能生产的科学和技术可行性,并为未来的发电示范聚变发电厂提供技术和概念,称为核聚变示范电厂(或称DEMOs)。ITER将在本十年的后半期开始进行首次实验,全功率实验计划于2036年开始。

虽然不同国家的DEMO时间表各不相同,但专家们的共识是,可在2050年前建成并运行生产电力的核聚变电厂。与此同时,许多私营商业企业也在开发核聚变电厂概念方面取得了进展,借鉴了多年来公共资助的研究和开发所产生的技术,并提出更快实现核聚变发电。

中国的聚变实验

除了作为ITER项目的一部分,中国还拥有并运行着许多实验性核聚变装置,包括高性能托卡马克,如全超导托卡马克核聚变实验装置(简称EAST)——能够长时间(>16分钟)运行高温等离子体,以及中国环流器二号M装置(简称HL-2M)——能够产生高密度和高压的等离子体。这些都是未来核聚变电厂不可缺少的特征。

国际原子能机构的作用是什么?

国际原子能机构(原子能机构)长期以来一直是国际核聚变研究和发展的核心,并于近期开始支持早期技术开发和部署。

  • 原子能机构于1960年创办了《核聚变》杂志,旨在交流有关核聚变进展的信息。该杂志现在被认为是聚变领域的主要期刊。原子能机构还定期出版《技术文件》和关于聚变的宣传和教育材料。
  • 第一届国际原子能机构聚变能会议于1961年召开,自1974年以来,原子能机构每两年召开一次会议,以促进对该领域发展和成就的讨论。观看关于这个系列会议历史的短片
  • 自1971年以来,原子能机构国际聚变研究委员会一直在促进核聚变研究领域的国际合作。
  • 《ITER协定》由原子能机构总干事保存。原子能机构和ITER组织之间的合作通过2008年的一项合作协议正式确立,并在2019年得到扩大和深化
  • 原子能机构促进世界各地DEMO项目活动的国际合作与协调。
  • 原子能机构开展了一系列技术会议,协调了与聚变科学和技术开发和部署相关主题的研究活动,并组织和支持了有关聚变的教育和培训活动。
  • 原子能机构维护着聚变能源研究基础数据的数字数据库,以及聚变装置信息系统(FusDIS),该系统汇集了世界各地正在运行、正在建设或计划中的聚变装置的信息。
  • 原子能机构正在开展一个项目,研究核裂变和核聚变能源生产之间的技术开发协同作用,以及核聚变设施的长期可持续性(包括放射性废物的处理)和法律及制度问题。
  • 原子能机构正在调查涵盖核聚变设施整个生命周期的关键安全方面,其中需要导则和具体的参考文件。
  • 原子能机构正在支持通用聚变示范工厂的预可行性研究。

Why are the scientists studying fusion energy?

Ever since the theory of nuclear fusion was understood in the 1930s, scientists — and increasingly also engineers — have been on a quest to recreate and harness it. That is because if nuclear fusion can be replicated on earth at an industrial scale, it could provide virtually limitless clean, safe, and affordable energy to meet the world’s demand.

Fusion could generate four times more energy per kilogram of fuel than fission (used in nuclear power plants) and nearly four million times more energy than burning oil or coal.

Most of the fusion reactor concepts under development will use a mixture of deuterium and tritium — hydrogen atoms that contain extra neutrons. In theory, with just a few grams of these reactants, it is possible to produce a terajoule of energy, which is approximately the energy one person in a developed country needs over sixty years.

Fusion fuel is plentiful and easily accessible: deuterium can be extracted inexpensively from seawater, and tritium can potentially be produced from the reaction of fusion generated neutrons with naturally abundant lithium. These fuel supplies would last for millions of years. Future fusion reactors are also intrinsically safe and are not expected to produce high activity or long-lived nuclear waste. Furthermore, as the fusion process is difficult to start and maintain, there is no risk of a runaway reaction and meltdown; fusion can only occur under strict operational conditions, outside of which (in the case of an accident or system failure, for example), the plasma will naturally terminate, lose its energy very quickly and extinguish before any sustained damage is done to the reactor.

Importantly, nuclear fusion — just like fission — does not emit carbon dioxide or other greenhouse gases into the atmosphere, so it could be a long-term source of low-carbon electricity from the second half of this century onwards.

Hotter than the sun

While the sun’s massive gravitational force naturally induces fusion, without that force a temperature even higher than in the sun is needed for the reaction to take place. On Earth, we need temperatures of over 100 million degrees Celsius to make deuterium and tritium fuse, while regulating pressure and magnetic forces at the same time, for a stable confinement of the plasma and to maintain the fusion reaction long enough to produce more energy than what was required to start the reaction.

While conditions that are very close to those required in a fusion reactor are now routinely achieved in experiments, improved confinement properties and stability of the plasma are still needed to maintain the reaction and produce energy in a sustained manner. Scientists and engineers from all over the world continue to develop and test new materials and design new technologies to achieve net fusion energy.

See more information in the following video:

The Future of Fusion Energy

Providing energy from nuclear fusion is widely regarded as the grand engineering challenge of the twenty-first century. What needs to be done to make fusion power commercially viable?

Where do we stand on fusion technology development?

Nuclear fusion and plasma physics research are carried out in more than 50 countries, and recently researchers have finally achieved scientific energy gain in a fusion experiment for the first time. Experts have come up with different designs and magnet-based machines in which fusion takes place, like stellarators and tokamaks, but also approaches that rely on lasers, linear devices and advanced fuels.

How long it will take for fusion energy to be successfully rolled out will depend on mobilizing resources through global partnerships and collaboration, and on how fast the industry will be able to develop, validate and qualify emerging fusion technologies. Another important issue is to develop in parallel the necessary nuclear infrastructure, such as the requirements, standards, and good practices, relevant to the realisation of this future energy source.

Following 10 years of component design, site preparation, and manufacturing across the world, the assembly of ITER in France, the world’s largest international fusion facility, commenced in 2020. ITER is an international project that aims to demonstrate the scientific and technological feasibility of fusion energy production and prove technology and concepts for future electricity-producing demonstration fusion power plants, called DEMOs. ITER will start conducting its first experiments in the second half of this decade and full-power experiments are planned to commence in 2036.

DEMO timelines vary in different countries, but the consensus among experts is that an electricity-producing fusion power plant could be built and operating by 2050. In parallel, numerous privately funded commercial enterprises are also making strides in developing concepts for fusion power plants, drawing on the know-how generated over years of publicly funded research and development, and proposing fusion power even sooner.

What is the role of the IAEA?

The IAEA has a long history of being at the core of international fusion research and development, and recently started supporting early technology development and deployment

  • The IAEA launched the Nuclear Fusion journal in 1960 to exchange information about advances in nuclear fusion. The journal is now considered the leading periodical in the field. The IAEA also regularly publishes TECDOCs and outreach and educational material on fusion.
  • The first international IAEA Fusion Energy Conference was held in 1961 and, since 1974, the IAEA convenes a conference every two years to foster discussion on developments and achievements in the field.  See a short film about the history of this conference series
  • Since 1971, the IAEA International Fusion Research Council has served as a catalyst for establishing improved international collaboration in fusion research.
  • The ITER Agreement is deposited with the IAEA Director General. Collaboration between the IAEA and the ITER Organization is formalized through a cooperation agreement in 2008, which was expanded and deepened in 2019.
  • The IAEA facilitates international cooperation and coordination on DEMO programme activities around the world.
  • The IAEA implements a series of technical meetings and coordinated research activities on topics relevant to fusion science and technology development and deployment, and organizes and supports education and training activities on fusion.
  • The IAEA maintains numerical databases of fundamental data for fusion energy research, as well as the Fusion Device Information System (FusDIS), which compiles information on fusion devices operating, under construction or being planned around the world.
  • The IAEA is carrying out a project on synergies in technology development between nuclear fission and fusion for energy production, and on the long-term sustainability – including the handling of radioactive waste – and legal and institutional issues for fusion facilities.
  • The IAEA is investigating key safety aspects covering the whole lifecycle of fusion facilities, where guidelines and specific reference documents are needed.
  • The IAEA is supporting a pre-feasibility study of a generic fusion demonstration plant.

 

This article was first published on iaea.org on 31 March 2022.