Enhancing sustainability of nuclear energy
While broader deployment of innovative reactors may begin after 2030, China is completing the construction of an advanced modular high temperature gas cooled reactor and Russia already operates two sodium cooled fast reactors, the BN-600 and BN-800 at Beloyarsk. Compared with typical reactors, fast reactors produce up to 70 times more energy from their fuel by using ‘fast’ neutrons not slowed by a moderator, greatly enhancing the sustainability of nuclear energy. They can also significantly reduce the volume, toxicity and lifespan of final radioactive waste.
During the meeting, which serves as a venue for reviewing activities of common interest and deciding on key areas of collaboration, participants heard about the IAEA’s activities on innovative reactor technologies, nuclear power economics, outreach and new service by the IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) called Analysis Support for Enhanced Nuclear Energy Sustainability (ASENES). The IAEA also presented its activities on advanced nuclear reactor safety, as well as safeguards-by-design, including joint efforts with GIF, to develop a robust definition of proliferation resistance to include in INPRO methodology.
Presentations by GIF members included an analysis of the impact of increasing shares of variable renewable energy sources on the deployment of innovative reactor systems and a discussion of GIF activities on the safety of next generation reactors. Topics of future collaboration such as small modular reactors (SMRs) were also discussed, with GIF members backing a call for greater focus on SMRs.
GIF Chair Hideki Kamide of Japan noted that the integration of nuclear and renewable energy sources, in particular for the production of hydrogen, was a topic of joint interest. Hydrogen produced by low carbon sources can be used in several applications to cut emissions from industry, transport and buildings.