水力压裂法:同位素水文学如何支持环境评估以帮助保护地下水

源自《国际原子能机构通报》

从原则上说,水源保护区附近的任何工业活动都可能造成污染。

水力压裂法是一种良好的刺激技术,通过在高压下注入流体使岩石破裂,以获取石油和天然气。同位素水文学家可以监测水质并追踪污染源(如果有的话)。

从原则上说,水源保护区附近的任何工业活动都可能造成污染。同位素水文学为监测水质和追踪污染源(如果有的话)提供了一种独特的方法组合。越来越多的国家正在利用这项技术,通过一种称为水力压裂法的方法保护用于采油场地附近的地表水和地下水。

水力压裂法开辟了以前难以获取的石油和天然气生产资源。这种资源约占美国石油输出总量的一半,许多发展中国家正在考虑首次使用这种方法。

水力压裂法是一种良好的刺激技术,通过在高压下注入流体使岩石破裂。这种流体由水、沙子和其他化学添加剂组成。水力压裂法通过井注入流体,在深部岩层中产生裂缝,从而使天然气和石油可以通过这些裂缝更自由地流动。此方法可以获取夹在紧密岩层并且使用传统钻孔和泵送方法无法获取的石油和天然气。

地表水会因压裂过程的溢出而被污染,也可能因提取后回收压裂液的废物坑发生意外释放而被污染;如果流体通过例如废弃或泄漏的井逸出,地下水就会受到污染;如果天然气泄漏到浅层含水层,饮用水也可能被污染。

美国亚利桑那大学水文学与大气科学教授 Jennifer McIntosh说,在许多疑似污染的情况下,由于缺乏基线数据,难以确定污染的来源和程度。“科学界有机会就评估逸散性气体泄漏和压裂液或地下水污染的最佳分析方法提供导则,”她说。

同位素水文学如何提供帮助

McIntosh和来自世界顶尖大学的14位其他作者最近发表的一篇论文解释了各种同位素水文学技术如何用于监测水力压裂法对地下水和地表水的影响,并就在各种情况和环境条件下使用哪种方法提出了建议。这篇题为“评含水层中压裂衍生气体和相关污染物识别的最新技术和新方法”的论文在2018年12月见于《环境科学与技术》期刊,其最初想法是在两年前的一次国际原子能机构技术会议上提出的。

最近在碳氢化合物、高分辨率天然气数据集和从地面到目标储层的相关流体中使用天然存在的同位素示踪剂的分析发展,以及将惰性气体地球化学和微生物学纳入更传统的水文地质和地球化学方法,为识别污染流体的来源提供了强有力的分析工具。

天然存在的放射性物质或盐等物质可以天然存在于地下水中,但也可能是污染的结果。同位素水文学可用于区分这些来源,来源的同位素组成取决于其源头:测量微量元素浓度、水的稳定同位素和溶解组分以及碘、氡和锶的放射性同位素,可以提供有关水的源头及其溶解组分的数据。除了传统的离子化学分析外,这可以揭示水的源头以及它所含的物质是压裂、其他人类活动的结果还是天然存在于环境中。

理想情况下,在压裂开始之前,应对该地区的地下水和地表水进行本底同位素调查,以确定该地区水体的钻前特征。McIntosh解释说,然后可以对照这一基线对怀疑由压裂活动造成的污染进行同位素检测。

利用甲烷气体的“聚集同位素”的一种新兴的复杂同位素方法,使科学家能够探测甲烷气体中氢同位素相对于其单个碳原子的分子位置,对可疑的杂散气体可能来自哪个气藏给出新的诊断见解,并区分甲烷是来自深层热源还是由土壤细菌在含水层中自然产生的,还是上述混合原因造成的。“如氪-81和氩同位素等新的地下水年龄放射性示踪剂可以帮助确定与水力压裂及石油和天然气生产有关的污染物可能存在于饮用水含水层中的时间,” McIntosh说。

论文最后一部分提供了分阶段识别污染计划的指南,并提供了一个战略路线图,使监管官员能够在特定场址的情况下选择最佳的同位素水文方法。

McIntosh补充说,开发用于检测压裂中污染的一些方法具有更广泛的应用,包括用于二氧化碳地下储存和核废物处置。

本文登载于《国际原子能机构通报》2019年4月刊《水》

How isotope hydrology can help

A recent paper by McIntosh and 14 other authors from leading universities around the world explained how various isotope hydrology techniques can be used to monitor the impact of fracking on ground and surface water. It also provided recommendations on which method to use under a diverse set of circumstances and environmental conditions. The initial ideas for the paper entitled A Critical Review of State-of-the-Art and Emerging Approaches to Identify Fracking-Derived Gases and Associated Contaminants in Aquifers, which appeared in the journal Environmental Science and Technology in December 2018, were developed at an IAEA technical meeting two years earlier.

Recent analytical developments using naturally occurring isotope tracers in hydrocarbons, high-resolution data sets of natural gases and associated fluids from surface to target reservoirs, and the incorporation of noble gas geochemistry and microbiology into more traditional hydrogeological and geochemical approaches offer powerful analytical tools for identifying the sources of contaminated fluid.

Substances such as naturally occurring radioactive materials or salt can occur naturally in groundwater, but their presence can also be the result of pollution. Isotope hydrology can be used to distinguish these sources. A source’s isotopic make-up depends on its origin: measuring minor element concentrations, stable isotopes of water and dissolved components, and radiogenic isotopes of iodine, radon and strontium can provide data on the origins of the water and its dissolved components. This, in addition to traditional chemical analysis of ions, can reveal the water’s origin and whether the substances it contains are the result of fracking, other human activity or are naturally present in the environment.

Ideally before fracking begins, a background isotopic survey of the area’s ground and surface waters should be made to establish a pre-drilling characterization of the area’s waters. Suspicions of pollution due to fracking activities can then be isotopically tested against this baseline, McIntosh explained.

An emerging complex isotopic approach, using ‘clumped isotopes’ of methane gas (CH4), allows scientists to probe the molecular position of hydrogen isotopes in the methane gas relative to its single carbon atom, giving new diagnostic insights into which gas reservoirs the suspected stray gases may have come from, or to distinguish whether the methane is from deep thermogenic sources or was produced naturally in aquifers by soil bacteria, or a mixture of the above. “New groundwater age radiotracers like krypton-81 and argon isotopes can help to determine how long pollutants related to fracking and oil and gas production may reside in drinking water aquifers,” McIntosh said.

The final section of the paper provides guidelines for a phased programme to identify contamination. It offers a strategic roadmap that would enable regulatory officials to select the best isotope hydrological method in site-specific cases.

Some of the approaches developed to detect contamination in fracking have broader applications, including for the subsurface storage of carbon dioxide and nuclear waste disposal, McIntosh added.

This article was featured in the April 2019 Bulletin edition on Water.