Lo que los átomos de las almejas nos cuentan sobre los peligros de la acidificación de los océanos

Artículo del Boletín del OIEA

Una amenaza pesa sobre las almejas y otros moluscos. La acidificación gradual de los océanos debida al aumento de las emisiones de dióxido de carbono (CO2) hará que algunos de estos organismos marinos tengan más dificultades para formar su caparazón o su esqueleto.

Organismos marinos como las almejas, los corales y los caracoles marinos diminutos permiten a científicos de todo el mundo observar los efectos de las emisiones de CO2 en el océano.(Fotografía: M. Belivermiş/Laboratorio de Radioecología de la Universidad de Estambul)

Una amenaza pesa sobre las almejas y otros moluscos. La acidificación gradual de los océanos debida al aumento de las emisiones de dióxido de carbono (CO2) hará que algunos de estos organismos marinos tengan más dificultades para formar su caparazón o su esqueleto. Una mala noticia no solo para los propios organismos, sino también para las personas que dependen de ellos.

Pero esta situación también tiene su vertiente positiva: gracias a las técnicas isotópicas, los científicos pueden rastrear los átomos de estos animales marinos con caparazón a fin de comprender mejor los efectos de la acidificación de los océanos y el cambio climático, un primer paso para combatir el problema.

“Conforme aumentan los niveles de acidez de los océanos, algunos organismos absorben y acumulan más radionucleidos o metales que otros, crecen más lentamente o necesitan más alimentos para sobrevivir. Las técnicas nucleares permiten rastrear todos estos efectos”, explica Murat Belivermiş, científico del laboratorio de radioecología de la Universidad de Estambul, que usa técnicas isotópicas para estudiar los efectos del cambio climático y la acidificación de los océanos en alimentos de origen marino social y económicamente importantes. El Sr. Belivermiş aprendió a utilizar las técnicas nucleares e isotópicas durante una beca en los Laboratorios del OIEA para el Medio Ambiente de Mónaco en 2013.

Organismos marinos como las almejas, los corales y los caracoles marinos diminutos permiten a científicos de todo el mundo observar los efectos en el océano de los cambios en las condiciones climáticas. El aumento de las emisiones de CO2 —el principal motor del cambio climático— también está acelerando la acidificación de los océanos. Los océanos absorben alrededor de una cuarta parte del CO2 que el mundo emite a la atmósfera, lo que provoca cambios en la química del agua de mar y, a su vez, en algunos ecosistemas y organismos marinos.

Las técnicas nucleares e isotópicas son instrumentos valiosos a disposición de los científicos para estudiar la acidificación de los océanos, un fenómeno conocido en ocasiones como ‘el otro problema del CO2’. Isótopos radiactivos como el calcio 45 pueden utilizarse como trazadores precisos para examinar, por ejemplo, la tasa de crecimiento de los organismos calcificadores (véase el recuadro “Base científica”). Estos organismos incluyen a los mejillones y las almejas, que forman su caparazón a partir de carbonato de calcio, un mineral de origen natural que se encuentra en el océano. La acidificación de los océanos provoca que las almejas y los mejillones tengan más dificultades para encontrar el material que necesitan para crear y mantener su caparazón de carbonato de calcio.

Por medio de radiotrazadores, el Sr. Belivermiş y sus colegas descubrieron que, expuestas a unas condiciones de agua de mar ligeramente acidificada, las almejas absorbían el doble de cobalto del que absorberían en condiciones de control equilibradas, mientras que otros organismos marinos, como las ostras, han mostrado un mayor grado de resiliencia. Esto pone de manifiesto que la acidificación de los océanos no solo plantea un riesgo para las almejas, sino también para las personas que las ingieren; el cobalto es un metal pesado necesario para el cuerpo humano en cantidades mínimas, pero que en concentraciones elevadas resulta tóxico. Esta situación puede tener consecuencias socioeconómicas más amplias en comunidades costeras como las de Turquía, que dependen de los alimentos de origen marino para el consumo local y la exportación a países europeos.

“La industria de la pesca, incluidos muchos acuicultores de Turquía, dependen de determinadas especies, como las almejas. Por esta razón, investigaciones de este tipo podrían ayudar a estos acuicultores a adaptarse a las condiciones cambiantes, lo que, a su vez, también contribuiría a proteger la economía pesquera del país”, afirma el Sr. Belivermiş.

El Sr. Belivermiş y su colega, Önder Kılıç, están tratando de ampliar su colaboración con el OIEA para estudiar los efectos a largo plazo de la acidificación de los océanos en el crecimiento, el valor nutricional y el estado de salud de especies utilizadas como alimentos de origen marino en Turquía, como el mejillón mediterráneo o el mújol.

“Algunas especies de mejillones viven hasta dos años”, afirma el Sr. Belivermiş. “Para poder estudiar el ciclo de vida completo de un organismo y comprender totalmente cómo se aclimata al agua acidificada, necesitamos experimentos mucho más duraderos”.

ph-es-fr.png

En el caso de las ostras, los cambios en el pH no destruyen el caparazón, sino que lo blanquean: un pH de 8,1 corresponde a las condiciones ambientales; un pH de 7,8 es el valor estimado para el año 2100, y un pH de 7,5, el valor estimado para el año 2300.

(Fotografía: N. Sezer/Laboratorio de Radioecología de la Universidad de Estambul)

Entender los efectos a largo plazo de la acidificación de los océanos

Queda mucho por hacer para entender los efectos a largo plazo de la acidificación de los océanos a escala mundial. Aunque los estudios sobre organismos marinos suelen durar semanas o meses, si queremos comprender los efectos más realistas de los cambios en el océano a lo largo del tiempo se necesitan estudios multigeneracionales.

En 2019 se pondrá en marcha un proyecto coordinado de investigación cuatrienal del OIEA que reunirá a científicos para mejorar la comprensión de los efectos a largo plazo de la acidificación de los océanos en los organismos marinos. El proyecto tiene por objetivo subsanar las lagunas en los datos sobre las especies de alimentos de origen marino económica y socialmente importantes, así como estudiar estrategias de adaptación para los sectores de la acuicultura y la pesca.

Asimismo, el proyecto ayudará a los científicos a entender los efectos a largo plazo de la acidificación de los océanos en los nutrientes esenciales de los alimentos de origen marino, como los ácidos grasos insaturados, que aportan beneficios al sistema cardiovascular humano, y qué consecuencias podría tener en la salud humana. Los científicos utilizarán tanto técnicas convencionales como nucleares e isotópicas para estudiar las especies de alimentos de origen marino que aportan estos nutrientes, como las ostras, los mejillones, las gambas, las langostas y el pescado.

“Si bien los océanos son, por un lado, frágiles, por otro son bastante resilientes. Hemos observado que, gestionados correctamente, pueden recuperarse”, afirma David Osborn, Director de los Laboratorios del OIEA para el Medio Ambiente. “Lo importante es que seamos conscientes de las amenazas a las que estamos sometiendo a los océanos y su efecto combinado, y que destinemos recursos para comprender esos efectos y hacerles frente de forma proactiva y eficaz”.

oyster-shells-1140x640.jpg

Oyster shells are bleached rather than destroyed by changes in pH levels: pH 8.1 is ambient conditions; pH 7.8 is estimated value in year 2100; pH 7.5 is estimated value in year 2300. (Photo: N. Sezer/Istanbul University)
 

Understanding the long-term effects of ocean acidification

Much work lies ahead in order to understand the long-term effects of ocean acidification worldwide. Studies on marine organisms often last weeks to months, but grasping the more realistic effects of the changing ocean over time requires multigenerational studies.

A four-year IAEA coordinated research project to be launched in 2019 will bring together scientists to advance the understanding of the effects of ocean acidification on marine organisms in the long term. The project will aim to fill data gaps on economically and socially important seafood species, as well as explore adaptation strategies for aquaculture and seafood industries.

It will also help scientists understand the long-term effects of ocean acidification on essential nutrients in seafood, such as unsaturated fatty acids that benefit the human cardiovascular system, and what impact this could have on human health. Scientists will use both conventional and nuclear and isotopic techniques to study seafood species providing these nutrients, including oysters, mussels, shrimp, lobster, and fish.

“The oceans are on the one hand fragile, but on the other hand quite resilient. We have seen that they can recover if they are managed well,” said David Osborn, Director of the IAEA Environment Laboratories. “What is important is that we recognize the threats we are putting on the oceans, their combined effect, and that we allocate resources to understanding those effects and addressing them in a proactive and effective way.”

How nuclear science and technology help us study and protect our oceans will be a topic discussed at the IAEA Ministerial Conference on Nuclear Science and Technology. Watch the event live on 28 to 30 November 2018. Have a look at the full programme here.