¿Qué son los reactores modulares pequeños (SMR)?

Ciencia nuclear en detalle

Los reactores modulares pequeños (SMR) son reactores nucleares avanzados con una capacidad de potencia de hasta 300 MW(e) por unidad, lo que representa cerca de un tercio de la capacidad de generación de los reactores nucleares de potencia tradicionales.

Los reactores modulares pequeños (SMR) tienen una capacidad de potencia de hasta 300 MW(e) por unidad. Muchos SMR, que pueden ensamblarse en fábrica y transportarse a un lugar para su instalación, están pensados para mercados como el de aplicaciones industriales o zonas alejadas con capacidad de red limitada. (Imagen: A. Vargas/OIEA)

Los reactores modulares pequeños (SMR) son reactores nucleares avanzados con una capacidad de potencia de hasta 300 MW(e) por unidad, lo que representa cerca de un tercio de la capacidad de generación de los reactores nucleares de potencia tradicionales. Los SMR, que pueden producir grandes cantidades de electricidad con bajas emisiones de carbono, son:

  • Pequeños: físicamente una fracción del tamaño de un reactor nuclear de potencia convencional.
  • Modulares: lo que permite que los sistemas y componentes se ensamblen en fábrica y se transporten como una sola unidad a un lugar para su instalación.
  • Reactores: que aprovechan la fisión nuclear para generar calor para producir energía.

En el siguiente enlace encontrará más información sobre la fisión y la energía nucleares.

Ventajas de los SMR

Muchos beneficios de los SMR están intrínsecamente vinculados a la naturaleza de su diseño, es decir, a que son pequeños y modulares. Dado que ocupan menos espacio, los SMR pueden colocarse en lugares donde no podrían ubicarse centrales nucleares más grandes. Las unidades prefabricadas de SMR pueden fabricarse y luego enviarse e instalarse in situ. Gracias a ello, su construcción es más asequible que la de los grandes reactores de potencia, que suelen estar diseñados a medida para un lugar en particular, lo que a veces ocasiona retrasos en la construcción. Los SMR permiten ahorrar costos y tiempo de construcción y pueden desplegarse gradualmente para ir ajustándose a la demanda creciente de energía.

Uno de los desafíos de acelerar el acceso a la energía es la infraestructura —cobertura de red limitada en zonas rurales— y los costos de conexión a la red para la electrificación rural. Una sola central eléctrica debería representar no más del 10 % de la capacidad total instalada de la red. En zonas que carecen de suficientes líneas de transmisión y capacidad de red los SMR pueden instalarse en una red existente o en una ubicación remota sin conexión a la red, debido a su menor producción eléctrica, y proporcionar energía con bajas emisiones de carbono para la industria y la población. Esto es especialmente pertinente para los microrreactores, que son un subconjunto de los SMR diseñados para generar energía eléctrica en general hasta 10 MW(e). Los microrreactores ocupan menos espacio que otros SMR y serán más adecuados para regiones que no tienen acceso a energía limpia, fiable y asequible. Además, los microrreactores podrían servir de reserva de suministro de energía en situaciones de emergencia o reemplazar generadores de electricidad que a menudo funcionan con diésel, por ejemplo, en comunidades rurales o empresas alejadas.

En comparación con los reactores existentes, los diseños de SMR propuestos son, en general, más simples y el concepto de seguridad para esos reactores suele basarse más en sistemas pasivos y características de seguridad inherente del reactor, como una potencia y una presión de funcionamiento bajas. Esto significa que en esos casos no es necesaria la intervención de un ser humano ni de una potencia o fuerza externa para parar los sistemas, porque los sistemas pasivos dependen de fenómenos físicos, como la circulación natural, la convección, la gravedad y la autopresurización. Estos márgenes de seguridad reforzados, en algunos casos, eliminan o disminuyen considerablemente las posibilidades de que se produzcan emisiones peligrosas de radiactividad al medio ambiente y el público en caso de accidente.

Los SMR tienen pocas necesidades de combustible. Las centrales nucleares basadas en SMR pueden necesitar recargar combustible con menor frecuencia, cada 3 a 7 años, frente al intervalo de 1 a 2 años de las centrales convencionales. Algunos SMR están diseñados para funcionar durante un lapso de hasta 30 años sin recargar combustible.

¿Cuál es la situación de los SMR?

Instituciones públicas y privadas están participando activamente en los esfuerzos encaminados a hacer prosperar la tecnología de los SMR en esta década. Akademik Lomonosov de Rusia, la primera central nuclear flotante del mundo que comenzó a explotarse comercialmente en mayo de 2020, produce energía a partir de dos SMR de 35 MW(e). En la Argentina, el Canadá, China, Corea del Sur, los Estados Unidos de América y Rusia hay otros SMR en fase de construcción o de concesión de licencias.

Más de 70 diseños de SMR comerciales que se están desarrollando en todo el mundo apuntan a diversos resultados y diferentes aplicaciones, como la electricidad, sistemas energéticos híbridos, la calefacción, la desalación del agua y vapor para aplicaciones industriales. Si bien los SMR tienen un costo de capital inicial por unidad más bajo, su competitividad económica aún deberá demostrarse en la práctica cuando se hayan desplegado.

Sepa cómo la colaboración internacional ayudará a hacer prosperar los SMR, incluidos los microrreactores (en inglés).

Los SMR y el desarrollo sostenible

Los SMR y las centrales nucleares ofrecen atributos únicos en lo que respecta a la eficiencia, la economía y la flexibilidad. Mientras que los reactores nucleares proporcionan fuentes de energía distribuibles —es decir, pueden ajustar la producción en función de la demanda de electricidad—, algunas energías renovables, como la eólica y la solar, son fuentes de energía variable y dependen del clima y la hora del día. Los SMR podrían combinarse con energías renovables e incrementar su eficiencia en un sistema energético híbrido. Estas características ubican a los SMR en un lugar importante del proceso de transición a una energía limpia y, al mismo tiempo, ayudan a los países a cumplir los Objetivos de Desarrollo Sostenible (ODS).

Se ha avanzado notablemente en los esfuerzos por alcanzar la meta del acceso universal a la energía, ODS 7, pero sigue habiendo carencias generalizadas, principalmente en las regiones alejadas y rurales. Dado que las iniciativas a escala mundial procuran poner en práctica soluciones limpias e innovadoras, un aumento en el uso de la energía renovable junto con la implantación de SMR podrían ayudar a colmar esas carencias.

Conozca cómo la energía nuclear puede reemplazar al carbón en la transición a una energía limpia.

¿Qué función desempeña el OIEA?

Advantages of SMRs

Many of the benefits of SMRs are inherently linked to the nature of their design – small and modular. Given their smaller footprint, SMRs can be sited on locations not suitable for larger nuclear power plants. Prefabricated units of SMRs can be manufactured and then shipped and installed on site, making them more affordable to build than large power reactors, which are often custom designed for a particular location, sometimes leading to construction delays. SMRs offer savings in cost and construction time, and they can be deployed incrementally to match increasing energy demand.

One of the challenges to accelerating access to energy is infrastructure – limited grid coverage in rural areas – and the costs of grid connection for rural electrification. A single power plant should represent no more than 10 per cent of the total installed grid capacity. In areas lacking sufficient lines of transmission and grid capacity, SMRs can be installed into an existing grid or remotely off-grid, as a function of its smaller electrical output, providing low-carbon power for industry and the population. This is particularly relevant for microreactors, which are a subset of SMRs designed to generate electrical power typically up to 10 MW(e). Microreactors have smaller footprints than other SMRs and will be better suited for regions inaccessible to clean, reliable and affordable energy. Furthermore, microreactors could serve as a backup power supply in emergency situations or replace power generators that are often fuelled by diesel, for example, in rural communities or remote businesses.

In comparison to existing reactors, proposed SMR designs are generally simpler, and the safety concept for SMRs often relies more on passive systems and inherent safety characteristics of the reactor, such as low power and operating pressure. This means that in such cases no human intervention or external power or force is required to shut down systems, because passive systems rely on physical phenomena, such as natural circulation, convection, gravity and self-pressurization. These increased safety margins, in some cases, eliminate or significantly lower the potential for unsafe releases of radioactivity to the environment and the public in case of an accident.

SMRs have reduced fuel requirements. Power plants based on SMRs may require less frequent refuelling, every 3 to 7 years, in comparison to between 1 and 2 years for conventional plants. Some SMRs are designed to operate for up to 30 years without refuelling.

Nuclear Power: The Road to a Carbon Free Future

Nuclear power provides 10 per cent of the world’s electricity, but to stem climate change, far greater amounts of clean and reliable energy are needed. Thirty countries currently operate nuclear power plants. More than two dozen others are looking at nuclear energy to meet their power and climate needs. In the western United States, more than 30 towns and cities are also looking to the future. They want to go carbon free, and they are betting on SMRs to get there.

What is the status of SMRs?

Both public and private institutions are actively participating in efforts to bring SMR technology to fruition within this decade. Russia’s Akademik Lomonosov, the world’s first floating nuclear power plant that began commercial operation in May 2020, is producing energy from two 35 MW(e) SMRs. Other SMRs are under construction or in the licensing stage in Argentina, Canada, China, Russia, South Korea and the United States of America.

More than 80 commercial SMR designs being developed around the world target varied outputs and different applications, such as electricity, hybrid energy systems, heating, water desalinisation and steam for industrial applications. Though SMRs have lower upfront capital cost per unit, their economic competitiveness is still to be proven in practice once they are deployed.

Read how international collaboration will help bring SMRs, including microreactors, to fruition.

SMRs and sustainable development

SMRs and nuclear power plants offer unique attributes in terms of efficiency, economics and flexibility. While nuclear reactors provide dispatchable sources of energy – they can adjust output accordingly to electricity demand – some renewables, such as wind and solar, are variable energy sources that depend on the weather and time of day. SMRs could be paired with and increase the efficiency of renewable sources in a hybrid energy system. These characteristics position SMRs to play a key role in the clean energy transition, while also helping countries address the Sustainable Development Goals (SDGs).

Efforts to achieve the target of universal access to energy, SDG 7, has made visible progress; however, gaps are still prevalent, mainly concentrated in remote and rural regions. As global efforts seek to implement clean and innovative solutions, the increased use of renewable energy coupled with the introduction of SMRs has the potential to fill such gaps.

Find out how nuclear can replace coal as part of the clean energy transition.

What is the role of the IAEA?

The SMR Regulators’ Forum, created in March 2015, provides enabling discussions among countries and stakeholders to share SMR regulatory knowledge and experience.

This article was first published on 4 November 2021.